关于电池包结构轻量化
所属分类:行业资讯点击次数:1509 次发布日期:2021-12-23 14:42
动力电池包是电动汽车核心零部件之一,其内部由大量电池单体通过串并联方式形成模组、系统,电池包重量约占整车总重 20-30%,生产成本约为整车 50%。电动汽车安全事故中绝大部分是电池包故障导致,如碰撞中电池包变形严重引发单体内短路、充放电中单体温升异常诱发热失控等。
电动汽车的快速发展对动力电池包提出了严苛的要求,如超长续驶里程、高比功率与高比能量指标、高安全性和可靠性要求。
研究数据表明,传统燃油汽车减重10%,经济性可提升 6-8%;而等速行驶工况下电动汽车自重降低10%,可使整车增加10%左右的续驶里程。
车用动力电池包可通过单体比能量提升、箱体结构轻量化、制造工艺改善等方式来增加整车续驶里程。单体比能量受电芯内部材料组分和外部尺寸限制,在短期内难以有突破性的进展;电池包结构轻量化设计可减轻重量从而增加整车续驶里程,因此箱体轻量化与模组紧凑化设计无疑是提升续驶里程的可行途径。
电池包结构设计需满足各项机械安全、密封绝缘和防火等性能要求。箱体结构强度、刚度、耐撞性、可靠性等性能以及内部模组布置等因素均会对电池包性能产生影响。理想的动力电池包结构设计应满足电动汽车各项性能要求下最大程度减轻自身重量。其中较为有效的方式有以下五种。
电池单体常用类型有圆柱形、方形铝壳和软包铝塑膜等,此外电池包内部还布置有BMS控制器、高压线束等辅助功能部件。
动力电池包的布置形式通常由整车空间特征决定,需考虑车辆驱动方式、整车重心位置与离地间隙等因素。
动力电池包生产企业根据整车企业需求,开发出模组排布不同、电池包箱体形状和安装吊耳位置各异的车用动力电池包。经过不断研究与发展,电池包常用结构布置形式有车身底部悬置式、车身结构一体式和标准箱体分布式等。
目前锂离子单体电芯能量密度提升缓慢,箱体减重设计是十分有效的电池包轻量化途径,而轻质材料应用对电池包箱体减重效果十分明显。
目前应用较为成熟的轻质材料有铝镁合金和复合材料两大类,铝、镁、钛合金是目前金属材料体系中密度较小的轻质材料。铝合金具有重量轻、回收利用、抗氧化性好,是目前轻质电池包箱体的常用材料,考虑到箱体结构强度的影响,压铸型铝箱与挤压-拼焊铝箱多用在电池包下箱体,冲压-拼焊铝箱一般用在电池包上箱盖。
复合材料显著特征是重量轻、绝缘性好及成型加工简便,各种复合材料制成的汽车零部件正在替代部分金属零部件,如发动机罩、油底壳、电池包上箱盖等。
复合材料受制于原材料、生产成本等因素,目前电池包中应用较多的复合材料有玻璃纤维增强塑料(SMC)、改性树脂等,SMC制成的电池包上箱盖比传统金属材料上盖减重约为38%,碳纤维复合材料(CFRP)应用也在逐渐增多,复合材料减重效果明显。
部分企业尝试将复合材料应用在电动汽车下底板,但复合材料刚度特性较差,需要加厚尺寸或者采用夹层结构来提升结构的抗弯特性,电池包下箱体设计成夹层结构并在中间层增加金属或者蜂窝铝结构,具有轻质高强、耐撞性好等诸多优点。
极限设计是指在产品详细设计阶段进行性能优化或后期对产品进行设计改良,极限设计需清楚设计的临界值,不仅要满足各项性能要求,还需满足零部件加工、产品装配工艺要求。
极限设计通常借助计算机辅助设计(CAE)对产品各项性能临界值和生产工艺参数探索,通过CAE仿真分析技术精准定位,例如将电池包箱体承载部位加强设计,而非承重部位使用薄壁材料,箱体不同位置变厚度实现结构性能满足设计要求又尽可能减重。
上一篇: PMMA车用发光材料
下一篇: 聚酰亚胺PI用于锂离子电池隔膜的优势